Library fl.aut.misc
(*
Authors: Thierry Coquand, Vincent Siles
*)
Set Implicit Arguments.
Module Misc.
Section Language.
Variable char: finType.
Definition word := seq char.
Definition language := pred word.
End Language.
Lemma ltn_trans_tight m n p : m < n → n < p → m < p.-1.
Lemma ltn_trans_tight' m n p : m < n → n < p.-1 → m < p.-1.
Lemma size_induction {X : Type} (f : X → nat) (p: X →Prop) :
( ∀ x, ( ∀ y, f y < f x → p y) → p x) → ∀ x, p x.
End Misc.
Authors: Thierry Coquand, Vincent Siles
*)
Set Implicit Arguments.
Module Misc.
Section Language.
Variable char: finType.
Definition word := seq char.
Definition language := pred word.
End Language.
Lemma ltn_trans_tight m n p : m < n → n < p → m < p.-1.
Lemma ltn_trans_tight' m n p : m < n → n < p.-1 → m < p.-1.
Lemma size_induction {X : Type} (f : X → nat) (p: X →Prop) :
( ∀ x, ( ∀ y, f y < f x → p y) → p x) → ∀ x, p x.
End Misc.